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Meltem Gürel1 and Daniele Biasci1

1Cancer Research UK Cambridge Institute, University of
Cambridge, Robinson Way, Cambridge CB2 0RE, UK

July 28, 2018

1 Introduction

Among the three main disease groups (circulatory diseases, respiratory diseases,
and cancer), cancer was the most common in 2013 for both women and men in the
UK: 352,197 new cases were reported in the UK in 2013 [1]. As a leading cause of
death globally, cancer urgently requires pertinent diagnosis and treatment meth-
ods. Information about patients’ genomic data are already used to tailor therapy
and to determine which patients are most likely to respond to certain drugs [2].
However, genotyping tumors is accompanied by certain challenges. For instance,
during therapy most tumors acquire resistance in time due to intratumoral hetero-
geneity and molecular evolution. Thus primary tumors and metastases need to be
monitored throughout treatment to determine drug e�cacy. Removing a piece of
tissue, or a sample of cells, from the tumor site is a well-established method of tu-
mor monitoring. However relying on tissue biopsies comes with certain limitations.
Performing these ”solid biopsies”, given the complexities of tumor heterogeneity,
both within a tumor and between a primary tumor and metastases, may not give
an accurate representation of the tumor’s molecular profile [3]. Moreover, during
progression of the disease, tumors evolve and sub-clones develop, causing di↵er-
ences between the primary tumor and metastases or recurrences. Due to these
genetic alterations, biopsies must be taken at multiple time points from multiple
sites. These procedures are invasive and both risky and painful for the patient. For
these reasons, minimally invasive methods that can monitor cancer in real-time
are direly needed. Liquid biopsies that detect disease biomarkers in bodily fluids
have the potential to eliminate the need for tumor tissue samples.
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Current methods focus on two main approaches: analysis of circulating tumor
cells (CTCs) [4], and analysis of circulating tumor DNA (ctDNA) [5]. The ratio of
ctDNA to cell free DNA is greater than that of CTCs to circulating normal cells
[6]. Also ctDNA is more accessible and easier to process [7]. Faster and cheaper
high-throughput sequencing of cancer genomes has produced a large database of
somatic mutations occurring in various tumor types. It is now necessary to monitor
the presence of these genetic alterations in cancer patients through accurate and
minimally invasive methods. ctDNA analysis fulfills these criteria, but it has yet
to be used routinely in clinical settings. Robust open-source statistical tools for
the interpretation of ctDNA data are lacking, causing a major bottleneck in the
applicability of the technology. Statistics play a huge role in the improvement of
evidence-based medicine and is reciprocally advanced through challenges brought
forward by progresses in the medical field. Current techniques that use ctDNA
data to investigate the longitudinal changes in the genomic profile of di↵erent
cancer types rely heavily on elaborate lab protocols [3, 8]. Methods that can shift
the burden to the dry lab, hence enable the clinical application of these techniques,
are required to make liquid biopsies more routinely applicable.

In this report we provide a uniform technical assessment of di↵erent computa-
tional methods aimed to identify somatic mutations in ctDNA data.

2 Methods

For this report, we used VarBench [9], an open-source software for the standardized
application of liquid biopsy data analysis we previously developed, to assess the
performance of di↵erent methods in identifying and quantifying the frequency of
somatic mutations in ctDNA. In particular, we leveraged on VarBench::compare,
a software pipeline designed to assess performance of di↵erent ctDNA analysis
methods [10].

3 Results

Methods included in this report

We assessed the performance of the following methods against the same set of
somatic mutations introduced in real ctDNA data at defined allele frequencies:
VarScan [11], SomaticSniper [12], VarDict [13], Strelka [14] and deepSNV [15].
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precision recall F1-score

Strelka 0.79600 0.252 0.3790
deepSNV 0.20400 0.507 0.2900
SomaticSniper 0.04180 0.361 0.0748
VarScan 0.01710 0.178 0.0432
VarDict 0.00732 0.659 0.0145

Table 1 – Performance metrics of assessed variant callers ordered by F1-score, descending.

Precision, recall, and F1-score

Looking at Table 1, which shows the average precision, recall, and F1-score for
each variant caller, we see that both Strelka and deepSNV could be preferable
variant callers for the ctDNA data at hand. While Strelka has higher precision,
deepSNV has higher sensitivity. The other variant callers, especially VarDict,
seem to call too many false positives, thus decreasing their precision performance
greatly. However, VarDict has the highest recall meaning that, out of all the
mutations present in our ctDNA data, it called the most. It is not uncommon to
use multiple variant callers [16]; we could call mutations with Strelka first, then
with deepSNV or VarDict, and intersect the called variants to get a more accurate
picture. Figures 1, 2, and 3 report the distributions of each performance metric.

Predicted and actual allele frequencies

Allele frequencies (AF) of somatic mutations occurring in ctDNA can potentially
be used as a surrogate measure of tumor burden [17]. For this reason, we assessed
the ability of di↵erent variant callers to correctly estimate the AF of the detected
somatic mutations. We looked at correlation between actual and predicted AF
to determine which variant callers provided the best AF estimates. Results are
reported in Table 2.

R2

Strelka 0.943
VarDict 0.752
VarScan 0.707
deepSNV 0.514
SomaticSniper 0.514

Table 2 – R2 of predicted versus actual AFs for the variant callers assessed in this report.
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Figure 1 – Precision is the ratio of correctly predicted variants to the total predicted variants.
Strelka has high precision which relates to a low false positive rate.

Table 2 shows that Strelka estimates are well correlated with the actual AF.
However, this results should be considered together with the observation that
Strelka achieves high detection precision at the expenses of recall (see Table 1).
Although VarDict and VarScan showed worst performances in detecting somatic
mutations, these callers perform better than deepSNV and SomaticSniper in es-
timating the correct AF of the detected mutations (see Table 2). Figure 4 shows
the data points used to calculate the R2 values reported in Table 2.

4 Conclusion

One of the mainstream approaches taken to manage cancer is early detection; ac-
cordingly researchers are trying to devise strategies to detect cancer from the very
early stages [17]. E↵ective cancer tests need to be non-invasive for the patient
and yield results for healthcare professionals in a reasonable amount of time. Liq-
uid biopsies, which require a simple blood draw, could allow clinicians to screen
patients for cancer in a minimally invasive way. Data obtained from ctDNA will

4



0.24 0.26 0.28 0.30 0.32 0.34

0
20

40
60

80
Recall

strelka
N = 100   Bandwidth = 0.004184

D
en

si
ty

0.48 0.50 0.52 0.54 0.56 0.58 0.60

0
10

20
30

40

Recall

deepsnv
N = 100   Bandwidth = 0.008109

D
en

si
ty

0.20 0.25 0.30 0.35 0.40 0.45

0
2

4
6

8
10

Recall

somaticsniper
N = 100   Bandwidth = 0.01861

D
en

si
ty

−0.1 0.0 0.1 0.2 0.3 0.4

0
1

2
3

4
5

6

Recall

varscan
N = 100   Bandwidth = 0.04092

D
en

si
ty

0.55 0.60 0.65 0.70 0.75

0
5

10
15

20
25

Recall

vardict
N = 100   Bandwidth = 0.01168

D
en

si
ty

Figure 2 – Recall (or sensitivity) answers the question “Of all the present mutations, how
many did the variant caller detect?”. It is calculated with the below formula (1) where TP
denotes true positives, and FN false negatives.

Recall =
TP

TP + FN
(1)

deepSNV and VarDict call mutations with good sensitivity.

yield faster and more accurate results as computational methods for ctDNA so-
matic variant calling increase in precision, recall and provide better AF estimates.
Such methods will also improve tumor monitoring throughout treatment, as min-
imally invasive tests will reduce patients exposure to the risks of repeated tissue
biopsies. To improve the likelihood of calling variants correctly, many ctDNA
detection methods rely on targeted deep sequencing. Indeed, increasing the cover-
age is expected to reduce false positives. Other pre-data-generation techniques to
reduce errors could be increasing sample size, and improving library preparation
protocols. However, any pre-data-generation technique is intrinsically dependent
on the particular platform or technology at hand. In order to maximize the utility
of our results, we took a platform agnostic approach and we focused on post-data-
generation strategies instead. With VarBench, we provided a streamlined way to
benchmark di↵erent variant callers to select the best performing one for the ctDNA
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Figure 3 – F1-score is the weighted average of precision and recall; if the cost of false positives
and false negatives are not similar, it is better to look at both precision and recall, otherwise
F1-score can be a good overall performance measure.

data at hand [9, 10]. We also pointed out that reporting called variants and point
estimates of the allele frequencies may not be su�cient, as clinical decisions could
need to be taken on the basis of allele frequency changes over time (i.e., ctDNA
data across multiple time points). Instead, for each variant, interval estimates
of allele frequencies should be reported. In this report, we provided an example
of such an approach when we calculated the R2 between called and actual allele
frequencies (see Figure 4). Ranking the variant callers using performance metrics
precision, recall, and F1-score, can allow the users to select the best variant caller
for their purposes, and also possibly lead them to run multiple variant callers in
parallel. With interval estimates of called-actual allele frequency R2, users can
decide the level of confidence in the call, thus providing a stronger rationale for
downstream clinical decisions.
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Figure 4 – Each plot reports the actual allele frequencies for selected somatic mutations (x
axis) versus the allele frequencies estimated by each variant caller for the same mutations (y
axis). Each point represents the results of running the selected variant caller on a bootstrap
resample of the original dataset using the pipeline VarBench::compare [9, 10].
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