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Deliverable description and summary  

We developed and released the R package glmSparseNet, which generalizes sparse regression 

models by including network-based regularization when the features have a graph structure (e.g. 

genes). Examples for survival data (using Cox models) and classification (with logistic regression) are 

provided for RNA-seq tumor data, including visualization functions for Kaplan-Meier relative risk 

assessment and to support clinical interpretation using the Cancer Hallmarks Analytics Tool.  

 

Background 

Sparse regression models have become popular to analyse omics data, in particular to address the 

dimensionality problem that these data usually bring. One fundamental challenge that often arises is 

the N<<p problem, when the number of measured features (p) greatly exceeds the number of available 

observations (N). 

Steaming from methods such as the Elastic-net, LASSO and Ridge, we have extended regularized 

optimization in order to include additional constraints and a priori knowledge, namely through 

information related with the inherent network when the features have a graph representation. This is 

the case for transcriptomic data, where there is an underlying/implicit gene network that can be either 

inferred from the data or included as external information, thus allowing the estimation of structured 

models. 

 

Research progress 

This deliverable is strongly connected with Task 4.1 - Sparse models for high-dimensional multi-omics 

patient data, whose goal is to develop methods for finding low-dimensional explanations of high-

dimensional omics data. 

We propose DegreeCox, a network-based regularization technique for the Cox's regression [1] that 

promotes hubs in proportional hazards models. This method combines the partial log-likelihood 

function of the Cox's regression model with degree regularization, which conveys a vertex centrality 

information of the network. 

Expanding this framework, we tested other families of generalized linear models supported by the 

glmnet package and also other penalizations based on node properties, leading to glmSparseNet, 

a sparse version of our method that allows other degree-based penalty functions, in order to promote, 

e.g. low-degree nodes: orphan genes that have low connections or negligible correlation with the 

remaining genes. 
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The package is freely available at https://github.com/sysbiomed/glmSparseNet, where all the detailed 

information and vignettes are provided, as was also submitted to Bioconductor. 

 

Structured sparse models developed in WP4 are relevant for the analysis of omics data in WP3, by 

integrating prior knowledge on molecular pathways and gene networks, and also in WP6 to support 

biomarker identification in melanoma. 

 
Publications 
 [1] Veríssimo, A., Oliveira, A.L., Sagot, M.-F., & Vinga, S. (2016). DegreeCox – a network-based 
regularization method for survival analysis. BMC Bioinformatics. 17(16): 449.  
https://doi.org/10.1186/s12859-016-1310-4  
[2] Veríssimo, A., Carrasquinha, E., Lopes, M.B., Oliveira, A.L., Sagot, M.-F., & Vinga, S. (2018). Sparse 
network-based regularization for the analysis of patientomics high-dimensional survival data. 
BIORXIV/2018/403402. 
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provides a good dimensionality reduction without degrading the performance of
the model.

Figure 4: Diagram of benchmark framework in BRCA dataset.

Since di↵erent model selection strategies may lead to a distinct optimal
number of selected features, we started by running a 10-fold cross-validation for
each model to chose the best � parameter for each one, by selecting the one with
the minimum log-likelihood deviation. We then tuned the � parameter to force
similar model sizes in the other two methods in order to promote an unbiased
comparison with similar model sizes. This results in having three � parameters
for each of EN, HubCox and OrphanCox, the optimal one calculated via
cross-validation, herein called the base model, and two others that were tuned
to match the same number of selected variables called complementary. Figure 4
shows the diagram of the workflow.

Log-rank test C-Index
Base model to target λ Model Selected Variables Train set Test set Train set Test set

EN 84 0 0.0049797 0.8811822 0.6789366
EN HubCox* 83 0 0.0029993 0.8763837 0.6635992

OrphanCox* 85 0 0.0238635 0.87262124 0.6574642
EN* 40 0 0.0277568 0.803588 0.6666667

HubCox HubCox 39 0 0.0732807 0.7916462 0.6451943
OrphanCox* 42 0 0.100175 0.8088773 0.6390593

EN* 103 0 0.0120689 0.9051202 0.6768916
Orphan HubCox* 106 0 0.0080043 0.9022302 0.6595092

OrphanCox 105 0 0.0019162 0.8939419 0.6697342

Table 1: Results for a single partition of the test and training sets using String
network. Lines with * have models trained with a target of the same number of
variables as the base model.

The dataset was divided into a training and a test data set, comprising 80%
and 20% of the data respectively. The results were assessed using two di↵erent
criteria to evaluate the accuracy of the fitted relative risk of each individual. We
used the concordance c-index (Harrell et al. 1982) that compares each pair of
individuals from the population and checks if the fitted relative risks of the pair
is concordant with the survival time, i.e. the individual with a lower relative
risk survives longer than the other. The second evaluation metric is performed
by separating the population in two groups by the median of the fitted relative
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risks. This allows to perform the Log-Rank test via the Kaplan-Meier estimator
(Kaplan and Meier 1958), and to assess if the survival curves of the two groups
are separable by comparing the p-values. Additionally, we also observed the
survival rate of the long-term survival of the low risk group.

Figure 5: Survival curves for best models from all the models calculated with
the same train and test partition with ↵ = 0.2 and EN (left with 84 variables),
HubCox (center with 84 variables) and OrphanCox (right with 105 variables)
for low and risk groups separated by median relative risks.

We start by looking at a single partition of the training and test data sets,
fixed with a pseudo-random initial seed of 1985. Table 1 summarizes the results
for the log-rank test and c-index metrics for the fitted models. We can observe
from this single example that no method stands outs out of the three. While in
the c-index metric, EN always is slightly higher then the other methods, with
mixed results on the log-rank test.

Looking at the best models for each type in Figure 5, we can observe that
the fitted survival curves of OrphanCox provide the best separation between
low and high risk individuals and, very importantly, a much higher long term
survival rate for the low risk individuals just short of 60%, while EN has around
40%. This statement still holds when looking at the EN model with 103 selected
variables, which might indicate that this could be an improvement of network-
based models over classical EN.

Figure 6: Venn diagram of the overlapping selected genes of all 1000 fitted
models. Showing diagram for the EN base model that has a target of 83 selected
genes.

When studying the stability of selected genes over 1000 resampling of the
train and test sets, we observe that HubCox is the most consistent with 657
unique variables selected at least once over all the runs. OrphanCox and EN
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perform much worst with 1129 and 1339, respectively. Figure 6 shows the Venn
diagram of the overlapping genes between models. These results are for the
models fitted using the EN base model, with a target of selected genes of 83.

It is interesting to note that there is a bigger overlap of selected genes be-
tween OrphanCox and EN, while the genes found by HubCox almost do not
intercept. This latter pattern is something to be expected as the underlying
hypothesis for each of the network-based model is inverse. Nevertheless, there
are 23 genes that were commonly selected, such as OR5AU1 (protein part of the
olfactory receptor proteins) and CEL (a glycoprotein secreted from the lactating
mammary gland into human milk), that have degrees of 325 and 251, respec-
tively (network where the highest degree is 10394 and median degree value is
220). Despite these genes being heavily penalized in HubCox, they are still
selected as their inclusion outweighs the network penalty.

By further looking into the genes selected, we used the model with the same
�, but now trained with the full BRCA dataset to understand which genes are
selected by the network-based methods and not by EN. In part of this analysis
we used the Cancer Hallmarks Analytics Tool (Hanahan and Weinberg 2011),
denoted as CHAT, to query the selected genes against a database of known
functions related to cancer. The CHAT database was populated based on a
text-mining analysis of 26 million PubMed abstracts. Figure 7 shows a heatmap
of the hallmarks counts per gene, per model, with some genes appearing few
times (in light blue) and some highlighted (in dark blue). Looking at the high-
lighted ones, there are some very well known genes related to cancer, such as
TP53 (Walsh et al. 2006), NRAS (Cimino et al. 2012) and KRAS (Paranjape
et al. 2011). However, all of these were selected by HubCox, while Orphan-
Cox selected genes that seemed less studied and discussed. Ultimately, this
is directly associated with the network and the hypothesis being tested with
the regularizer, as known genes are bounded to have a more central role in
the network, especially if they have been studied as associated with multiple
cancer types. In particular, we observe in the results that HubCox promotes
these genes in the solution, making this method more suitable to have a sta-
ble selection of variables and an improved performance. In contrast, OrhanCox
promotes unknown or little studied genes that can become good candidates to
further research. To conclude, these two comparably performing models might
be seen as complementary and suited to di↵erent applications.

6 Conclusion

The initial hypothesis of this work was that the enrichment of survival and
generalized linear models with a priori network information would improve the
models’ predictive quality, stability and interpretability. Our results show that
the models’ goodness-of-fit metrics is comparable with elastic net, and seems to
have a better performance in predicting long term survival individuals. More-
over, we have achieved a good stability of selected variables in resampling tests,
which is crucial for models’ interpretability. Both the promotion of hubs or low
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Figure 7: Counts of hallmarks association in CHAT database, the darker the
cell, the higher the count of hallmarks for a particular gene. Only showing genes
that do not intercept with EN.

connected nodes have their merits, and while it would be interesting to have
a definitive model for transcriptomic breast cancer data, the results obtained
from both methods are suitable for di↵erent purposes.

The variability present in transcriptomic data allows for models with di↵er-
ent combinations of genes to be equivalent. These proposed methods enable a
more guided approach for gene selection and biomarker identification in preci-
sion medicine.
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